9 research outputs found

    A Wideband Direct Data Domain Genetic Algorithm Beamforming

    Get PDF
    In this paper, a wideband direct data-domain genetic algorithm beamforming is presented. Received wideband signals are decomposed to a set of narrow sub-bands using fast Fourier transform. Each sub-band is transformed to a reference frequency using the steering vector transformation. So, narrowband approaches could be used for any of these sub-bands. Hence, the direct data-domain genetic algorithm beamforming can be used to form a single ‘hybrid’ beam pattern with sufficiently deep nulls in order to separate and reconstruct frequency components of the signal of interest efficiently. The proposed approach avoids most of drawbacks of already-existing statistical and gradient-based approaches since formation of a covariance matrix is not needed, and a genetic algorithm is used to solve the beamforming problem

    Hosted Cuckoo Optimization Algorithm with Stacked Autoencoder-Enabled Sarcasm Detection in Online Social Networks

    No full text
    Sarcasm detection has received considerable interest in online social media networks due to the dramatic expansion in Internet usage. Sarcasm is a linguistic expression of dislikes or negative emotions by using overstated language constructs. Recently, detecting sarcastic posts on social networking platforms has gained popularity, especially since sarcastic comments in the form of tweets typically involve positive words that describe undesirable or negative characteristics. Simultaneously, the emergence of machine learning (ML) algorithms has made it easier to design efficacious sarcasm detection techniques. This study introduces a new Hosted Cuckoo Optimization Algorithm with Stacked Autoencoder-Enabled Sarcasm Detection and Classification (HCOA-SACDC) model. The presented HCOA-SACDC model predominantly focuses on the detection and classification of sarcasm in the OSN environment. To achieve this, the HCOA-SACDC model pre-processes input data to make them compatible for further processing. Furthermore, the term frequency-inverse document frequency (TF-IDF) model is employed for the useful extraction of features. Moreover, the stacked autoencoder (SAE) model is utilized for the recognition and categorization of sarcasm. Since the parameters related to the SAE model considerably affect the overall classification performance, the HCO algorithm is exploited to fine-tune the parameters involved in the SAE, showing the novelty of the work. A comprehensive experimental analysis of a benchmark dataset is performed to highlight the superior outcomes of the HCOA-SACDC model. The simulation results indicate that the HCOA-SACDC model accomplished enhanced performance over other techniques

    A Shorted Stub Loaded UWB Flexible Antenna for Small IoT Devices

    Get PDF
    In this manuscript, a compact in size yet geometrically simple Ultra-Wideband (UWB) antenna is demonstrated. The flexible-by-nature substrate ROGERS 5880, having a thickness of 0.254 mm, is utilized to design the proposed work. The antenna configuration is an excerpt of a traditional rectangular monopole antenna resonating at 5 GHz. Initially, a pair of triangular slots are employed to extend the impedance bandwidth of the antenna. In addition, a semi-circular-shaped, short-ended stub is connected at the upper edges of the patch to further increase the operational bandwidth. After optimization, the proposed antenna offers UWB ranging from 2.73–9.68 GHz, covering almost the entire spectrum allocated globally for UWB applications. Further, the antenna offers a compact size of 15 × 20 mm2 that can easily be integrated into small, flexible electronics. The flexibility analysis is done by bending the antenna on both the x and y axes. The antenna offers performance stability in terms of return loss, radiation pattern, and gain for both conformal and non-conformal conditions. Furthermore, the strong comparison between simulated and measured results for both rigid and bent cases of the antenna, along with the performance comparison with the state-of-the-art, makes it a potential candidate for present and future compact-sized flexible devices

    Chaotic pigeon inspired optimization technique for clustered wireless sensor networks

    No full text
    Wireless Sensor Networks (WSN) interlink numerous Sensor Nodes (SN) to support Internet of Things (loT) services. But the data gathered from SNs can be divulged, tempered, and forged. Conventional WSN data processes manage the data in a centralized format at terminal gadgets. These devices are prone to attacks and the security of systems can get compromised. Blockchain is a distributed and decentralized technique that has the ability to handle security issues in WSN. The security issues include transactions that may be copied and spread across numerous nodes in a peer-peer network system. This breaches the mutual trust and allows data immutability which in turn permits the network to go on. At some instances, few nodes die or get compromised due to heavy power utilization. The current article develops an Energy Aware Chaotic Pigeon Inspired Optimization based Clustering scheme for Blockchain assisted WSN technique abbreviated as EACPIO-CB technique. The primary objective of the proposed EACPIO-CB model is to proficiently group the sensor nodes into clusters and exploit Blockchain (BC) for inter-cluster communication in the network. To select Cluster Heads (CHs) and organize the clusters, the presented EACPIO-CB model designs a fitness function that involves distinct input parameters. Further, BC technology enables the communication between one CH and the other and with the Base Station (BS) in the network. The authors conducted comprehensive set of simulations and the outcomes were investigated under different aspects. The simulation results confirmed the better performance of EACPIO-CB method over recent methodologies

    A Low Profile Ultra-Wideband Antenna with Reconfigurable Notch Band Characteristics for Smart Electronic Systems

    No full text
    This study describes the design and implementation of a small printed ultra-wideband (UWB) antenna for smart electronic systems with on-demand adjustable notching properties. A contiguous sub-band between 3–4.1 GHz, 4.45–6.5 GHz, or for both bands concurrently, can be mitigated by the antenna. Numerous technologies and applications, including WiMAX, Wi-Fi, ISMA, WLAN, and sub-6 GHz, primarily utilize these band segments remitted by the UWB. The upper notch band is implemented by inserting an open-ended stub with the partial ground plane; the lower notch band functionality is obtained by etching a U-shaped slot from the radiating structure. The basic UWB mode is then changed to a UWB mode, with a single or dual notch band, using two diodes to achieve reconfigurability. The antenna has a physically compact size of 17 × 23 mm2 and a quasi-omnidirectional maximum gain of 4.9 dBi, along with a high efficiency of more than 80%, according to both simulation and measurement data. A significant bandwidth in the UWB region is also demonstrated by the proposed design, with a fractional bandwidth of 180% in relation to the 5.2 GHz center frequency. Regarding compactness, consistent gain, and programmable notch features, the proposed antenna outperforms the antennas described in the literature. In addition to these benefits, the antenna’s compact size makes it simple to incorporate into small electronic devices and enables producers to build many antennas without complications
    corecore